Damped free Vibration-Numerical 1

Damped free Vibration-Numerical 1

by null
null null read time

A mass of 85 kg is supported on a spring which deflects 18 mm under the weight of the mass. The vibrations of the mass are constrained to be linear and vertical. A dashpot is provided which reduces the amplitude to one-quarter of its initial value in two complete oscillations. Calculate magnitude of the damping force at unit velocity and periodic time of damped vibration.

Solution:

fig_damped-free-vibration-numerical-1 Fig-1

Given data:

mass  m=85\ m = 85 kg
Static deflection,  x=18 mm=0.018 m\ x = 18\ \text{mm} = 0.018\ \text{m}

Let,
x0=x_0 = initial amplitude
x2=x_2= final amplitude after two complete cycle =14= {1\over4}

Taking ratio,

x0x2=x014x0=4{x_0 \over x_2}={x_0 \over {1 \over 4} x_0}=4

Damping force:

F=c.x˚=c\text F = c.\mathring x= c

Now,

ξ=cccORξ=c2mω0(ascc=2mωn) c=(2mωn)ξ  (1)\begin{aligned} \xi= {c \over c_c} \quad \text {OR} \quad &\xi= {c \over 2m\omega_0} \quad (\text {as} \quad c_c=2m\omega_n)\\ \therefore \ &c=(2m\omega_n)\xi \ \dots\dots\dots\dots \ (1) \end{aligned}

1. The Logarithmic decrement:

δ=1nloge(x0xn)=12loge(x0x2)=12loge(4)\begin{aligned} \delta &= {1 \over n} log_e\bigg ({x_0 \over x_n}\bigg)\\ &= {1 \over 2} log_e\bigg ({x_0 \over x_2}\bigg)\\ &= {1 \over 2} log_e(4) \end{aligned}
Advertisement

2. Damping factor:

ξ=δ4π2+δ2=δ4π2+δ2=0.1091\begin{aligned} \xi &= {\delta \over \sqrt{4 \pi^2 + {\delta}^2} } \\ &={\delta \over \sqrt{4 \pi^2 + {\delta}^2} }\\ &= 0.1091 \end{aligned}

3. Frequency of undamped free vibration:

The natural circular frequency of vibration is,

ωn=k m=m g x m=gx=9.810.018=23.34 rad/s\begin{aligned} \omega_n &= {\sqrt{k \over \ m}} \\ &= {\sqrt{m \ g \over \ x \ m}}\\ &= {\sqrt{g \over x}} \\ &= {\sqrt{9.81 \over 0.018}}\\ &= 23.34 \ \text {rad/s} \end{aligned}

From equation (1); we get,
Damping force at unit velocity;

F=c=(2mωn)ξ=(2 x 85 x 23.34) x (0.1091)=91.67 N\begin{aligned} \text F = c &= (2m\omega_n)\xi \\ &= (2 \ \text x \ 85\ \text x \ 23.34)\ \text x \ (0.1091) \\ &= 91.67 \ \text N \end{aligned}

The time period of damped vibration is,

tp=2πωd=2πωn 1ξ2=2π(23.34) 1(0.1091)2=0.2708 sec\begin{aligned} t_p &= {2\pi \over \omega_d} \\ &= {2\pi \over \omega_n \ \sqrt {1 -\xi^2}} \\ &= {2\pi \over (23.34) \ \sqrt {1 -(0.1091)^2}} \\ &=0.2708 \ \text {sec} \end{aligned}

A mass of 85 kg is supported on a spring which deflects 18 mm under the weight of the mass. The vibrations of the mass are constrained to be linear and vertical. A dashpot is provided which reduces the amplitude to one-quarter of its initial value in two complete oscillations. Calculate magnitude of the damping force at unit velocity and periodic time of damped vibration.

Solution:

fig_damped-free-vibration-numerical-1 Fig-1

Given data:

mass  m=85\ m = 85 kg
Static deflection,  x=18 mm=0.018 m\ x = 18\ \text{mm} = 0.018\ \text{m}

Let,
x0=x_0 = initial amplitude
x2=x_2= final amplitude after two complete cycle =14= {1\over4}

Taking ratio,

x0x2=x014x0=4{x_0 \over x_2}={x_0 \over {1 \over 4} x_0}=4

Damping force:

F=c.x˚=c\text F = c.\mathring x= c

Now,

ξ=cccORξ=c2mω0(ascc=2mωn) c=(2mωn)ξ  (1)\begin{aligned} \xi= {c \over c_c} \quad \text {OR} \quad &\xi= {c \over 2m\omega_0} \quad (\text {as} \quad c_c=2m\omega_n)\\ \therefore \ &c=(2m\omega_n)\xi \ \dots\dots\dots\dots \ (1) \end{aligned}

1. The Logarithmic decrement:

δ=1nloge(x0xn)=12loge(x0x2)=12loge(4)\begin{aligned} \delta &= {1 \over n} log_e\bigg ({x_0 \over x_n}\bigg)\\ &= {1 \over 2} log_e\bigg ({x_0 \over x_2}\bigg)\\ &= {1 \over 2} log_e(4) \end{aligned}
Advertisement

2. Damping factor:

ξ=δ4π2+δ2=δ4π2+δ2=0.1091\begin{aligned} \xi &= {\delta \over \sqrt{4 \pi^2 + {\delta}^2} } \\ &={\delta \over \sqrt{4 \pi^2 + {\delta}^2} }\\ &= 0.1091 \end{aligned}

3. Frequency of undamped free vibration:

The natural circular frequency of vibration is,

ωn=k m=m g x m=gx=9.810.018=23.34 rad/s\begin{aligned} \omega_n &= {\sqrt{k \over \ m}} \\ &= {\sqrt{m \ g \over \ x \ m}}\\ &= {\sqrt{g \over x}} \\ &= {\sqrt{9.81 \over 0.018}}\\ &= 23.34 \ \text {rad/s} \end{aligned}

From equation (1); we get,
Damping force at unit velocity;

F=c=(2mωn)ξ=(2 x 85 x 23.34) x (0.1091)=91.67 N\begin{aligned} \text F = c &= (2m\omega_n)\xi \\ &= (2 \ \text x \ 85\ \text x \ 23.34)\ \text x \ (0.1091) \\ &= 91.67 \ \text N \end{aligned}

The time period of damped vibration is,

tp=2πωd=2πωn 1ξ2=2π(23.34) 1(0.1091)2=0.2708 sec\begin{aligned} t_p &= {2\pi \over \omega_d} \\ &= {2\pi \over \omega_n \ \sqrt {1 -\xi^2}} \\ &= {2\pi \over (23.34) \ \sqrt {1 -(0.1091)^2}} \\ &=0.2708 \ \text {sec} \end{aligned}

Comments:


All comments that you add will await moderation. We'll publish all comments that are topic related, and adhere to our Code of Conduct.

Want to tell us something privately? Contact Us


No comments available.